Moran CORE

Open source ophthalmology education for students, residents, fellows, healthcare workers, and clinicians. Produced by the Moran Eye Center in partnership with the Eccles Library

Search Moran CORE

Normal Tension Glaucoma

Home / Glaucoma / Introduction to Glaucoma

Title: Normal Tension Glaucoma
Authors: William Clark, BA; Brian Stagg, MD
Date: 05/22/20
Keywords/Main Subjects: Glaucoma, Open-Angle Glaucoma, Normal Tension Glaucoma

-Glaucoma: array of clinical disorders characterized by progressive optic neuropathy and visual field loss1

-Normal intraocular pressure (IOP): Gaussian distribution with an established mean of 15 mmHg and upper limit of normal of 21 mmHg2,3,4

-Normal tension glaucoma (NTG):  open chamber angles and glaucomatous optic neuropathy without a measured elevation (>21mmHG) in IOP 1,5

 

-Optic disc: Progressive inferior and superior temporal rim thinning; focal rim atrophy or “notching”; disc hemorrhages; increased inferior and superior cup-to-disc ratios6,7

-Retinal nerve fiber layer (RNFL): focal band-like defects and diffuse atrophy in the peripapillary region8

-Visual field: Nasal step-like defects, paracentral and arcuate scotomas obeying the horizontal midline9,10

Overlooking NTG: in the setting of normal IOP, diagnosis requires clinical suspicion and vigilant optic nerve examination; single center study found NTG was diagnosed via population screening 4 times more often than during routine clinical examination11

Diagnosis of exclusion: imperative to investigate multiple etiologies for optic neuropathy and visual field loss; masquerading syndromes are often misdiagnosed as NTG and vice versa12,13,14

-Nonglaucomatous etiologies:

-Developmental: colobomas, megalopapilla, congenital pits, tilted optic nerve, physiologic cupping [visual field defects are non-progressive]12,1

-Acquired: compressive lesions of anterior visual pathway, anterior ischemic optic neuropathy (AION), optic neuritis, syphilis, toxic-metabolic optic neuropathy (methanol poisoning, heavy metal exposure, B12/folate deficiency) [predominately optic nerve pallor, but may cause cupping]12,14,15

-Glaucomatous etiologies:

-Primary open angle glaucoma: underestimated IOP [ruled out with pachymetry and diurnal curve of IOP measurement]12

-Secondary open angle glaucoma: pigment dispersion, exfoliation syndrome, neovascularization, inflammation [ruled out with anterior segment examination]12

-Angle-closure glaucoma [ruled out with gonioscopy]

-Previous insult: steroids, uveitis, trauma, systemic hypotension [visual deficits typically stable]12

-Collaborative Normal Tension Glaucoma Study (CNTGS):

-IOP reduction by 30% lowers risk of visual field progression 16

-Majority (65%) of non-treated eyes showed no progression after 5 years and 12% of subjects progressed despite IOP reduction16

-Benefits of IOP reduction on visual field progression blunted by cataract formation17

-Natural history and risk factors should be weighed before initiating aggressive IOP reduction therapy17

-Low-Pressure Glaucoma Treatment Study (LGTS):

-Brimonidine tartrate 0.2% and timolol maleate 0.5% have similar efficacy in lowering IOP18

-Brimonidine is more likely to prevent progressive visual loss than timolol18

-9% of brimonidine patients had visual field progression as opposed to 39% of timolol patients over the 4 year study period18

-Brimonidine patients had a 28% drop-out rate due to ocular side effects, compared to a 11% drop-out rate in timolol patients18

-Proposed explanations: timolol may cause greater systemic hypotension and reduced ocular perfusion, brimonidine has demonstrated neuroprotective effects in animal models18

 

Clinical Epidemiology

-Asian populations: NTG represents 47-92% of open angle glaucoma (OAG) cases19,20

-White populations: NTG represents 30-39% of OAG cases19,20

-African populations: NTG represents 21% of OAG cases in a Ghanaian population and 57% in a South African population21,20

-High-normal IOP and wide diurnal IOP fluctuation22

-Systemic hypotension, especially nocturnal hypotension23,24,25

-Vasospastic disease (especially migraine and Raynaud’s phenomenon)26,27

-Sleep apnea28

-Myopia19

-Large optic discs29

-Family history30

 

Pathophysiology

-Vascular dysregulation: leads to unstable ocular perfusion, ischemia and optic nerve damage31,12

-Elevated translaminar pressure: may be due to structural variation in the lamina cribosa or low intracranial pressure 32,33

-Increased sensitivity to normal IOP: may be due to anatomic or genetic variation34

 

Evaluation

-History of Present Illness: [assess for episodes of acute vision loss or color vision loss; visual impairment in everyday activities; episodes of eye irritation]35,12

-Pertinent Review of Systems:[assess for dizziness, headaches, weakness, syncope, fatigue, vasospasm]36

-Past Medical/Surgical History: [assess for anemia, cardiovascular disease, hypotensive crisis, hypercholesterolemia, diabetes, respiratory disease, renal disease, vasospasm, migraine headaches, sleep apnea, vitamin deficiency, heavy metal exposure]35,12

-Past Ocular History: [assess for myopia, glaucoma, inflammation, trauma, steroid use, elevated IOP, ocular surgery including laser in situ keratomileusis (LASIK)]12,35

-Family History: [assess for congenital ocular disease, blindness and glaucoma] 1

-Medication History: [assess with special attention to steroid and antihypertensive use]12

-Best-corrected visual acuity (VA): VA disproportionate to optic nerve exam or visual field testing warrants further workup12

-Pupillary response: abnormal pupillary light reflexes may occur37

-Intraocular pressure: measurement <22 mmHg required for diagnosis12

-Slit lamp examination: exclusion of masquerading syndromes required

-Gonioscopy: exclusion of angle closure and angle recession required; narrow-angle NTG shown to be more progressive than wide-angle NTG38

-Dilated fundus examination: increased frequency of splinter hemorrhages near the optic nerve head and more localized RNFL defects near fixation compared to OAG39,40

-Visual fields: (automatic static perimetry) scotomas are deeper, more focal and closer to fixation compared to OAG; dense paracentral scotomas are common41,42,12

-Pachymetry: central corneal thickness (CCT) affects IOP measurement, especially when measured via applanation tonometry (thinner CCT underestimates IOP)43,12,35

-Color vision testing: abnormalities raise suspicion for underlying neurological disorder12,13

-Neuroimaging: several patient factors have been linked with a higher probability of positive neuroradiological findings (age<50, lower visual acuity, and optic rim pallor>cupping)30

-Laboratory workup: toxic-metabolic [heavy metals and vitamin B12/folate], infectious [syphilis and lyme antibody testing], and inflammatory [erythrocyte sedimentation rate and C-reactive protein levels]12

-24-hour blood pressure monitoring: assesses ocular blood flow12

-Optical coherence tomography: provides quantitative imaging of optic nerve head and RNFL35

 

Management

-Target IOP: reduce IOP relative to the extent of glaucomatous damage and risk factors for progression, with 30% reduction as a general target1,16,35

-Forms of therapy: medication, laser trabeculoplasty and incisional surgery35

-Mitigate risk factors: coordinate with primary care physician regarding adequate cardiac/respiratory/renal functioning, sleep apnea, blood pressure control (avoid nocturnal anti-hypertensive dosing), and iron levels44,12,28

-IOP-lowering medications: prostaglandin analogs, selective alpha-2 adrenergic agonists and carbonic anhydrase inhibitors12

-Evidence: prostaglandins typically first-line due to efficacy and safety profile; brimonidine more efficacious than timolol in preventing visual field loss18,12,35

-Selective laser trabeculoplasty (SLT): effective as initial therapy; proven to lower mean IOP and variability of IOP between visits; shown to lower IOP by 15% and topical medication use by 27% at 1 year post-procedure12,45,46,47

-Trabeculectomy: reduces IOP to sub-normal and single-digit levels; reduces IOP fluctuation; mitomycin-C augmented trabeculectomy shown to have a >60% success rate (>30% IOP reduction from baseline) at 4-year follow up; shown to slow further progression of visual field loss48,49,50

-Evaluation: perform thorough interval history with special attention to medication adherence and side effects; measure IOP and VA; perform slit lamp exam; evaluate optic nerves; assess visual fields12,35

-Interval: Progressive optic nerve or visual field damage (1-2 months); unachieved target IOP( 3-6 months); achieved target IOP (6-12 months)12,35

 

References

  1. Allingham RR, Damji KF, Freedman SF, Freedman SF, Rhee DJ, Shields MB. Shields Textbook of Glaucoma. Wolters Kluwer; 2010. Accessed April 6, 2020. http://ebookcentral.proquest.com/lib/eastcarolina/detail.action?docID=3418252
  2. Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980;25(3):123-129. doi:10.1016/0039-6257(80)90086-7
  3. Klein BE, Klein R, Linton KL. Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci. 1992;33(7):2224-2228.
  4. Shiose Y, Kawase Y. A new approach to stratified normal intraocular pressure in a general population. Am J Ophthalmol. 1986;101(6):714-721. doi:10.1016/0002-9394(86)90776-2
  5. Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol. 1980;24(6):621-664. doi:10.1016/0039-6257(80)90123-x
  6. Jonas JB, Fernández MC, Stürmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology. 1993;100(1):63-68. doi:10.1016/s0161-6420(13)31694-7
  7. Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations. Trans – Am Acad Ophthalmol Otolaryngol Am Acad Ophthalmol Otolaryngol. 1974;78(2):OP255-274.
  8. Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol Chic Ill 1960. 1980;98(9):1564-1571. doi:10.1001/archopht.1980.01020040416003
  9. Hart WM, Becker B. The onset and evolution of glaucomatous visual field defects. Ophthalmology. 1982;89(3):268-279. doi:10.1016/s0161-6420(82)34798-3
  10. Harrington DO. The Bjerrum Scotoma. Trans Am Ophthalmol Soc. 1964;62:324-348.
  11. Grødum K, Heijl A, Bengtsson B. A comparison of glaucoma patients identified through mass screening and in routine clinical practice. Acta Ophthalmol Scand. 2002;80(6):627-631. doi:10.1034/j.1600-0420.2002.800613.x
  12. Bagheri N, Wajda B, Calvo C, Durrani A. The Wills Eye Manual: Office and Emergency Room Diagnosis and Treatment of Eye Disease. Wolters Kluwer; 2016. Accessed April 28, 2020. http://ebookcentral.proquest.com/lib/eastcarolina/detail.action?docID=4931402
  13. Dias DT, Ushida M, Battistella R, Dorairaj S, Prata TS. Neurophthalmological conditions mimicking glaucomatous optic neuropathy: analysis of the most common causes of misdiagnosis. BMC Ophthalmol. 2017;17. doi:10.1186/s12886-016-0395-x
  14. Choudhari NS, Neog A, Fudnawala V, George R. Cupped disc with normal intraocular pressure: The long road to avoid misdiagnosis. Indian J Ophthalmol. 2011;59(6):491-497. doi:10.4103/0301-4738.86320
  15. Golnik K. Nonglaucomatous optic atrophy. Neurol Clin. 2010;28(3):631-640. doi:10.1016/j.ncl.2010.03.005
  16. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126(4):487-497. doi:10.1016/s0002-9394(98)00223-2
  17. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998;126(4):498-505. doi:10.1016/s0002-9394(98)00272-4
  18. Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S, Low-Pressure Glaucoma Study Group. A randomized trial of brimonidine versus timolol in preserving visual function: results from the Low-Pressure Glaucoma Treatment Study. Am J Ophthalmol. 2011;151(4):671-681. doi:10.1016/j.ajo.2010.09.026
  19. Cho H-K, Kee C. Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 2014;59(4):434-447. doi:10.1016/j.survophthal.2013.09.003
  20. Kim KE, Park K-H. Update on the Prevalence, Etiology, Diagnosis, and Monitoring of Normal-Tension Glaucoma. Asia-Pac J Ophthalmol Phila Pa. 2016;5(1):23-31. doi:10.1097/APO.0000000000000177
  21. Ntim-Amponsah CT, Amoaku WMK, Ofosu-Amaah S, et al. Prevalence of glaucoma in an African population. Eye. 2004;18(5):491-497. doi:10.1038/sj.eye.6700674
  22. Gramer E, Leydhecker W. [Glaucoma without ocular hypertension. A clinical study]. Klin Monatsbl Augenheilkd. 1985;186(4):262-267. doi:10.1055/s-2008-1050918
  23. Hulsman CAA, Vingerling JR, Hofman A, Witteman JCM, de Jong PTVM. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch Ophthalmol Chic Ill 1960. 2007;125(6):805-812. doi:10.1001/archopht.125.6.805
  24. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117(5):603-624. doi:10.1016/s0002-9394(14)70067-4
  25. Béchetoille A, Bresson-Dumont H. Diurnal and nocturnal blood pressure drops in patients with focal ischemic glaucoma. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1994;232(11):675-679. doi:10.1007/bf00171383
  26. Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ. Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol. 1988;105(1):35-39. doi:10.1016/0002-9394(88)90118-3
  27. Buckley C, Hadoke PWF, Henry E, O’Brien C. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol. 2002;86(2):227-232. doi:10.1136/bjo.86.2.227
  28. Mojon DS, Hess CW, Goldblum D, et al. Normal-tension glaucoma is associated with sleep apnea syndrome. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2002;216(3):180-184. doi:10.1159/000059625
  29. Burk RO, Rohrschneider K, Noack H, Völcker HE. Are large optic nerve heads susceptible to glaucomatous damage at normal intraocular pressure? A three-dimensional study by laser scanning tomography. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1992;230(6):552-560. doi:10.1007/bf00181778
  30. Greenfield DS, Siatkowski RM, Glaser JS, Schatz NJ, Parrish RK. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105(10):1866-1874. doi:10.1016/S0161-6420(98)91031-4
  31. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38 Suppl:S3-6. doi:10.1016/0039-6257(94)90041-8
  32. Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259-266. doi:10.1016/j.ophtha.2009.06.058
  33. Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44(12):5189-5195. doi:10.1167/iovs.03-0174
  34. Killer H, Pircher A. Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis. Eye. 2018;32(5):924-930. doi:10.1038/s41433-018-0042-2
  35. Prum BE, Rosenberg LF, Gedde SJ, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern(®) Guidelines. Ophthalmology. 2016;123(1):P41-P111. doi:10.1016/j.ophtha.2015.10.053
  36. Anderson DR. Normal-tension glaucoma (Low-tension glaucoma). Indian J Ophthalmol. 2011;59(Suppl1):S97-S101. doi:10.4103/0301-4738.73695
  37. Chang DS, Xu L, Boland MV, Friedman DS. Accuracy of Pupil Assessment for the Detection of Glaucoma. Ophthalmology. 2013;120(11). doi:10.1016/j.ophtha.2013.04.012
  38. Ha A, Kim YK, Jeoung JW, Kim DM, Park KH. Association of Angle Width With Progression of Normal-Tension Glaucoma. JAMA Ophthalmol. 2019;137(1):13-20. doi:10.1001/jamaophthalmol.2018.4333
  39. Hendrickx KH, van den Enden A, Rasker MT, Hoyng PF. Cumulative incidence of patients with disc hemorrhages in glaucoma and the effect of therapy. Ophthalmology. 1994;101(7):1165-1172. doi:10.1016/s0161-6420(94)31192-4
  40. Woo SJ, Park KH, Kim DM. Comparison of localised nerve fibre layer defects in normal tension glaucoma and primary open angle glaucoma. Br J Ophthalmol. 2003;87(6):695-698.
  41. McLean IM, Mueller E, Buttery RG, Mackey DA. Visual field assessment and the Austroads driving standard. Clin Experiment Ophthalmol. 2002;30(1):3-7. doi:10.1046/j.1442-9071.2002.00487.x
  42. Caprioli J, Spaeth GL. Comparison of visual field defects in the low-tension glaucomas with those in the high-tension glaucomas. Am J Ophthalmol. 1984;97(6):730-737. doi:10.1016/0002-9394(84)90505-1
  43. Behki R, Damji KF, Crichton A, CCT workshop participants. Canadian perspectives in glaucoma management: the role of central corneal thickness. Can J Ophthalmol J Can Ophtalmol. 2007;42(1):66-74. doi:10.3129/can j ophthalmol.06-108
  44. Chumbley LC, Brubaker RF. Low-tension glaucoma. Am J Ophthalmol. 1976;81(6):761-767. doi:10.1016/0002-9394(76)90359-7
  45. El Mallah MK, Walsh MM, Stinnett SS, Asrani SG. Selective laser trabeculoplasty reduces mean IOP and IOP variation in normal tension glaucoma patients. Clin Ophthalmol Auckl NZ. 2010;4:889-893. doi:10.2147/opth.s11787
  46. Lee JW, Ho WL, Chan JC, Lai JS. Efficacy of selective laser trabeculoplasty for normal tension glaucoma: 1 year results. BMC Ophthalmol. 2015;15. doi:10.1186/1471-2415-15-1
  47. Nitta K, Sugiyama K, Mawatari Y, Tanahashi T. [Results of selective laser trabeculoplasty (SLT) as initial treatment for normal tension glaucoma]. Nippon Ganka Gakkai Zasshi. 2013;117(4):335-343.
  48. Hitchings RA, Wu J, Poinoosawmy D, McNaught A. Surgery for normal tension glaucoma. Br J Ophthalmol. 1995;79(5):402-406.
  49. Schultz SK, Iverson SM, Shi W, Greenfield DS. Safety And Efficacy Of Achieving Single-Digit Intraocular Pressure Targets With Filtration Surgery In Eyes With Progressive Normal-Tension Glaucoma. J Glaucoma. 2016;25(2):217-222. doi:10.1097/IJG.0000000000000145
  50. Jayaram H, Strouthidis NG, Kamal DS. Trabeculectomy for normal tension glaucoma: outcomes using the Moorfields Safer Surgery technique. Br J Ophthalmol. 2016;100(3):332-338. doi:10.1136/bjophthalmol-2015-306872

 

Faculty Approval by: Brian Stagg, MD
Identifier: Moran_CORE_27919
Copyright statement: Copyright Author Name, ©2020. For further information regarding the rights to this collection, please visit: http://morancore.utah.edu/terms-of-use/